The correct option is A 2n−1n+1
(1+x)n=1+nC1x+nC2x2+...nCn(xn)
(1−x)n=1−nC1x+nC2x2+...(−1)nnCn(xn)
Therefore
12[(1+x)n−(1−x)n]=nC1x+nC3x3+...
Integrating with respect to x, we get
12(n+1)[(1+x)n+1+(1−x)n+1]|10=nC12+nC34+nC56...
Hence
12(n+1)[(1+x)n+1+(1−x)n+1]|10
=12(n+1)[2n+1+0−1−1]
=1n+1[2n−1]