Value of the expression 1√2+√5+1√5+√8+1√11+√8+...n terms, is
√3n+2−√23
n√2+3n+√2
less than n
less than √n3
1√2+√5+1√5+√8+1√8+√11+...nterms=√5−√23+√8−√53+√11−√83+....+√5+(n−1)3−√2+(n−1)33=√3n+2−√23=3n+2−23(√3n+2+√2)=n√3n+2+√2=n√2+3n+√2<n√3n<n
If 3+5+7+........+n terms5+8+11+........+10 terms=7, the value of n is