The correct option is B None of these
We have
(C0+C1+....+Cn)2=∑r=0C2r+2P
⇒2P=(2n)2−∑r=0C2r
But C20+C21+....+C2n=2nCn
Thus,
P=22n−1−12(2nCn)
Next
Q=(C0−C1)21+(C0−C2)2+....+(C0−Cn)2+(C1−C2)2+...+(C1−Cn)2+(C2−C3)2+...+(C2−Cn)2+....+(Cn−1−Cn)2
=n(C20+C21+....+C2n)−2P
But C20+C21+....+C2n=2nCn
and
P=22n−1−12(2nCn)
Next, note that R can also be written as
R=∑∑r<s(r+s)CrCs
=∑∑r<s(n−r+n−s)Cn−rCn−s
⇒2R=2n∑∑r<sCrCs
⇒R=n2[22n−2nCn]
S=∑0≤∑r<s≤n(n−r+n−s)(Cn−r−Cn−s)2
=2n∑0≤∑r<s≤n(Cr+Cs)2−S
⇒2S=2nQ⇒S=nQ
T=n∑nk=0Ck2+2P
=(n−1)(2nCn)+22n