∫a0f(x)=∫a0f(a−x)
Step 4: Solution:
Given integral can be evaluated as follows:
I=∫π0x1+sinxdx=∫π0π−x1+sin(π−x)dx =∫π0π−x1+sinxdx ...(2)
Step 5:
Adding (1) and (2), we get
2I=∫π0x1+sinxdx+∫π0π−x1+sinx
⇒2I=∫π0π1+sinxdx ...(3)
Step 6:
Now we will evaluate integral on the RHS of equation (3),
∫π0π1+sinxdx=∫π0π(1−sinx)(1−sinx)(1+sinx)
=∫π0π(1−sinx)1−sin2x=∫π0π(1−sinx)cos2xdx
=∫π0π(sec2x−secxtanx)dx
Step 7:
Integrating term by term, we get
=π(∫π0(sec2x)dx−∫π0(secxtanx)dx)
=π([tanx]π0−[secx]π0)
=π[0−0−(−1−1)]
=2π
Step 8:
Going back this result in equation (3), we will get
2I=∫π0x1+sinxdx=2π
⇒I=π
Step 9: Result:
I=π
Hence, option B.