The correct option is
B −14log(2x+3)(6x2+23x+21)=4−log(3x+7)(4x2+12x+9)
⇒log(2x+3)(2x+3)(3x+7)=4−log(3x+7)(2x+3)2
⇒log(2x+3)(2x+3)+log(2x+3)(3x+7)=4−log(3x+7)(2x+3)2
⇒1+log(2x+3)(3x+7)=4−log(3x+7)(2x+3)2
Let α=log(2x+3)(3x+7)⇒1α=log(3x+7)(2x+3)2
⇒1+α=4−2α
⇒α+2α=3
⇒α2−3α+2=0
⇒(α−1)(α−2)=0
⇒α=1 or α=2
⇒log(2x+3)(3x+7)=1 or log(2x+3)(3x+7)=2
⇒3x+7=2x+3 or 3x+7=(2x+3)2
⇒x=−4 or 3x+7=4x2+12x+9
⇒x=−4 or 4x2+12x+9−3x−7=0
⇒x=−4 or 4x2+9x+2=0
⇒x=−4 or (4x+1)(x+2)=0
⇒x=−4 or x=−14 or x=−2
When x=−4 then 2x+3=−5<0
Hence log(2x+3)(6x2+23x+21) is not defined.
When x=−14 then 2x+3=2×−14+3=−12+3=53>0
Hence log(2x+3)(6x2+23x+21) is defined.
When x=−2 then 2x+3=2×−2+3=−4+3=−1<0
Hencelog(2x+3)(6x2+23x+21) is not defined.
∴x=−14