The correct options are
A 25
D 1√5
(log3x)(log59)−logx25+log32=log354
⇒(log3x)(log59)−logx25=log354−log32
⇒(log3x)(log59)−2logx5=log327[∵loga−logb=logab]
⇒(logexloge3)(loge9loge5)−2loge5logex=3[∵logba=logalogb]
⇒2(logexloge5)−2loge5logex=3
⇒2log5x−2log5x=3
Substitute log5x=t
⇒2t−2t=3
⇒2t2−3t−2=0
⇒(2t+1)(t−2)=0
⇒t=−12,t=2
⇒log5x=−12,log5x=2
⇒5−1/2=x;52=x
From the given eqn , it follows that x>0,x≠1
Hence, x=1√5,25 are the solutions of given eqn