The correct option is D 8
Given 14xlog2√x=(214)2(log2x)24
clearly x>0
Taking log on both sides with base 2, we get
log2(14)+(log2√x)(log2x)=14+14(log2x)2[∵logam=mloga]
⇒−2log2(2)+12(log2x)(log2x)=14+14(log2x)2[∵logaa=1]
or (log2x)2=9 or log2x=±3
or x=23,2−3=8,18
Ans: D