Values of x satisfying the equation log(2x+3)(6x2+23x+21)=4−log(3x+7)(4x2+12x+9)
Given equation is
log(2x+3)(6x2+23x+21)=4−log(3x+7)(4x2+12x+9)
⇒log(2x+3)(6x2+14x+9x+21)=4−log(3x+7)((2x)2+2×2x×3x+(3)2)
⇒log(2x+3)(2x+3)(3x+7)=4−log(3x+7)(2x+3)2
⇒log(2x+3)(2x+3)+log(2x+3)(3x+7)=4−log(3x+7)(2x+3)2 ∴(logaxy=logax+logay)
⇒log(2x+3)(2x+3)+log(2x+3)(3x+7)=4−2log(3x+7)(2x+3) ∴(logaxn=nlogax)
⇒1+log(2x+3)(3x+7)=4−2log(3x+7)(2x+3) ∴(logaa=1)
⇒log(2x+3)(3x+7)=3−2log(3x+7)(2x+3)
⇒log(2x+3)(3x+7)=3−21log(2x+3)(3x+7) ∴(logax=1logxa)
Let log(2x+3)(3x+7)=y
Then
y=3−2y
y2=3y−2
y2−3y+2=0
By factorize
(y−2)(y−1)=0
When (y−2)=0 then y=2 and when (y−1)=0 then y=1
Put the value of y
For y=2
log(2x+3)(3x+7)=2
(3x+7)=(2x+3)2 ∴(logax=b) then x=ab
(3x+7)=(4x2+12x+9)
⇒3x+7=4x2+12x+9
⇒4x2+12x+9−3x−7=0
⇒4x2+9x−2=0
By factorize and we get,
(4x+1)(x+2)=0
x=−14,−2
for y=1
log(2x+3)(3x+7)=1 ∴(logax=b) then x=ab
(3x+7)=(2x+3)
⇒3x+7−2x−3=0
⇒x=−4
Hence the solutions are (x=−2,−4,−14).