→V=2^i+^j−^k and →W=^i+3^k. If →U is a unit vector, then the maximum value of the scalar triple product [→U →V →W] is
√59
Given →V=2^i+^j−^k and →W=^i+3^k
[→U →V →W]=→U.[(2^i+^j−^k)×(^i+3^k)]→U.(3^i−7^j−^k)=|→U||3^i−7^j−^k| cos θ
which is maximum, if angle between →U and 3^i−7^j−^k is 0 and maximum value
=|3^i−7^j−^k|=√59