Potential Energy of a Dipole in Uniform Electric Field
Vector a⃗, b⃗...
Question
Vector →a,→b,→c are three non-zero vectors such that (→a−→b).→c=0. Let →a×(→b×→c)+→b×(→c×→a)=(4+x2)→b−(4xcos2θ)→a, where →a and →b are non-collinear vectors and x>0,0<θ<10, then number of different vales of θ will be
Open in App
Solution
→a×(→b×→c)+→b×(→c×→a)=(4+x2)→b−(4xcos2θ)→a ⇒(→a.→c)→b−(→a.→b)→c+(→b.→a)→c−(→b.→c)→a=(4+x2)→b−(4xcos2θ)→a So →b.→c=4xcos2θ & →a.→c=4+x2 But →b.→c=→a.→c⇒4xcos2θ=4+x2 x2−4xcos2θ+4=0 D=16cos4θ−16=16(cos4θ−1) D should be greater than or equal to 0 ∴cos4θ=1cos2θ=1⇒sin2θ=0 θ=π,2π,3π