Let A=⎡⎢⎣112302103⎤⎥⎦
Here, |A|=−1(9−2)=−7 (expanding along the second column)
|A|I=−7I .....(1)
We know that, adjA=CT
So, we will find out co-factors of each element of A.
C11=(−1)1+1∣∣∣0203∣∣∣
⇒C11=0
C12=(−1)1+2∣∣∣3213∣∣∣
⇒C12=−(9−2)=−7
C13=(−1)1+3∣∣∣3010∣∣∣
⇒C13=0
C21=(−1)2+1∣∣∣1203∣∣∣
⇒C21=−(3−0)=−3
C22=(−1)2+2∣∣∣1213∣∣∣
⇒C22=3−2=1
C23=(−1)2+3∣∣∣1110∣∣∣
⇒C23=−(0−1)=1
C31=(−1)3+1∣∣∣1202∣∣∣
⇒C31=2−0=2
C32=(−1)3+2∣∣∣1232∣∣∣
⇒C32=−(2−6)=4
C33=(−1)3+3∣∣∣1130∣∣∣
⇒C33=0−3=−3
So, the cofactor matrix C=⎡⎢⎣0−70−31124−3⎤⎥⎦
⇒adjA=CT=⎡⎢⎣0−32−71401−3⎤⎥⎦
Consider (adjA)A=⎡⎢⎣0−32−71401−3⎤⎥⎦⎡⎢⎣112302103⎤⎥⎦
=⎡⎢⎣0−9+20+0+00−6+6−7+3+4−7+0+0−14+2+120+3−30+0+00+2−9⎤⎥⎦
=⎡⎢⎣−7000−7000−7⎤⎥⎦
=−7⎡⎢⎣100010001⎤⎥⎦
⇒(adjA)A=−7I .....(2)
Now, A(adjA)=⎡⎢⎣112302103⎤⎥⎦⎡⎢⎣0−32−71401−3⎤⎥⎦
=⎡⎢⎣0−7+0−3+1+22+4−60+0+0−9+0+26+0−60+0+0−3+0+32+0−9⎤⎥⎦
=⎡⎢⎣−7000−7000−7⎤⎥⎦
=−7⎡⎢⎣100010001⎤⎥⎦
⇒A(adjA)=−7I ....(3)
From (1), (2) and (3), we get
A(adjA)=(adjA)A=|A|I