wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Verify A(adjA)=(adjA)A=|A|I
A=112302103

Open in App
Solution

Let A=112302103

Here, |A|=1(92)=7 (expanding along the second column)
|A|I=7I .....(1)

We know that, adjA=CT

So, we will find out co-factors of each element of A.
C11=(1)1+10203
C11=0

C12=(1)1+23213
C12=(92)=7

C13=(1)1+33010
C13=0

C21=(1)2+11203
C21=(30)=3

C22=(1)2+21213
C22=32=1

C23=(1)2+31110
C23=(01)=1

C31=(1)3+11202
C31=20=2

C32=(1)3+21232
C32=(26)=4

C33=(1)3+31130
C33=03=3

So, the cofactor matrix C=070311243

adjA=CT=032714013

Consider (adjA)A=032714013112302103

=09+20+0+006+67+3+47+0+014+2+120+330+0+00+29

=700070007

=7100010001
(adjA)A=7I .....(2)

Now, A(adjA)=112302103032714013

=07+03+1+22+460+0+09+0+26+060+0+03+0+32+09

=700070007

=7100010001
A(adjA)=7I ....(3)

From (1), (2) and (3), we get
A(adjA)=(adjA)A=|A|I

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Elementary Transformation of Matrices
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon