Verify A(adj)(A)−(adj A)A=|A|In|)in
⎡⎢⎣1−1230−2103⎤⎥⎦
Let A=⎡⎢⎣1−1230−2103⎤⎥⎦
Now, |A|=∣∣
∣∣1−1230−2103∣∣
∣∣=1(0−0)−(−1)(9+2)+2(0−0)=0+11+0=11
∴ |A|I=11⎡⎢⎣100010001⎤⎥⎦=⎡⎢⎣110001100011⎤⎥⎦
Cofactors of A are
A11=0,A12=−(9+2)=−11,A13=0,A21=−(−3−0)=3,A22=3−2=1,A23=−(0+1)=−1,A31=2−0=2,A32=−(−2−6)=8A33=0+3=3
∴ adj(A)=⎡⎢⎣0−11031−1283⎤⎥⎦T=⎡⎢⎣032−11180−13⎤⎥⎦
Now, A(adj A)=⎡⎢⎣1−1230−2103⎤⎥⎦⎡⎢⎣032−11180−13⎤⎥⎦
=⎡⎢⎣0+11+03−1−22−8+60+0+09+0+26+0−60+0+03+0−32+0+9⎤⎥⎦=⎡⎢⎣110001100011⎤⎥⎦
Also (adj A)A=⎡⎢⎣032−11180−13⎤⎥⎦⎡⎢⎣1−1230−2103⎤⎥⎦
=⎡⎢⎣0+9+20+0+00−6+6−11+3+811+0+0−22−2+240−3+20+0+00+2+9⎤⎥⎦=⎡⎢⎣110001100011⎤⎥⎦
Hence, A(adj A)=(adj A)A=|A|I3