f∘g means g(x) function is in f(x) function.
g∘f means f(x) function is in g(x) function.
f:N→Z0,g:Z0→Q and h:Q→R...... [ Given ]
g∘f:N→Q and h∘g:Z0→R.
⇒ h∘(g∘f):N→R and (h∘g)∘f:N→R
So, both have the same domains.
⇒ (g∘f)(x)=g[f(x)]
=g(2x) ......... [ Since, f(x)=2x ]
=12x ----- ( 1 )
⇒ (h∘g)(x)=h[g(x)]
=h(1x)
=e1x ---- ( 2 )
Now,
⇒ [h∘(g∘f)](x)=h[(g∘f)(x)]
=h(12x)......... [ From ( 1 ) ]
=e12x......... [ From ( 2 ) ]
⇒ [(h∘g)∘f](x)=(h∘g)[f(x)]
=(h∘g)(2x)......... [ Since, f(x)=2x ]
=e12x ......... [ From ( 2 ) ]
⇒ [h∘(g∘f)](x)=[(h∘g)∘f](x), ∀x∈N
So, h∘(g∘f)=(h∘g)∘f
Hence, the associate property has been verified.