f(x)=x(x+4)2=x(x2+8x+16)=x3+8x2+16x on [0,4]
x3+8x2+16x has unique value for all x between 0 and 4.
∴f(x) is continuous in [0,4]
f(x)=x3+8x2+16x
Differentiating with respect to x:
f′(x)=3x2+16x+16
∴f(x) is differentiable in (0,4)
So both the necessary conditions of Lagrange’s mean value theorem is satisfied.
∴ there exists a point c∈(0,4) such that:
f′(c)=f(4)−f(0)4−0
⇒f′(c)=f(4)−f(0)4
We have f′(x)=3x2+16x+16
f′(c)=3c2+16c+16
For f(4)=3×42+16×4+16=48+64+16=128
f(0)=0+0+16=16
f′(c)=f(4)−f(0)4
⇒3c2+16c+16=128−164
⇒3c2+16c+16=1124=28
⇒3c2+16c+16−28=0
⇒3c2+16c−12=0
⇒c=−16±√256+1446=−16±206
∴c=−16+206=46=23∈(0,4)
∴c=−16−206=−366=−6∉(0,4)
Hence c=23
Hence, Lagrange’s mean value theorem is verified.