2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Theorems for Differentiability
Verify Mean V...
Question
Verify Mean Value Theorem if
f
(
x
)
=
x
3
−
5
x
2
−
3
x
in the interval
[
1
,
−
3
]
Open in App
Solution
Given :
f
(
x
)
=
x
3
−
5
x
2
−
3
x
It is a polynomial.
Therefore it is continuous in the interval
[
1
,
3
]
and derivative in the interval
(
1
,
3
)
.
f
(
x
)
=
x
3
−
5
x
2
−
3
x
f
′
(
x
)
=
3
x
2
−
10
x
−
3
Let
a
=
1
,
b
=
3
f
'
(
c
)
=
3
c
2
−
10
c
−
3
f
(
1
)
=
(
1
)
3
−
5
(
1
)
2
−
3
(
1
)
=
1
−
5
−
3
=
−
7
f
(
3
)
=
(
3
)
3
−
5
(
3
)
2
−
3
(
3
)
=
27
−
45
−
9
=
−
27
By Mean value theorem
f
'
(
c
)
=
f
(
b
)
−
f
(
a
)
b
−
a
⟹
3
c
2
−
10
c
−
3
=
−
27
−
(
−
7
)
3
−
1
=
−
20
2
=
−
10
3
c
2
−
10
c
−
3
=
−
10
3
c
2
−
10
c
−
3
+
10
=
0
3
c
2
−
10
c
+
7
=
0
3
c
2
−
7
c
−
3
c
+
7
=
0
3
c
2
−
3
c
−
7
c
+
7
=
0
3
c
(
c
−
1
)
−
7
(
c
−
1
)
=
0
(
3
c
−
7
)
(
c
−
1
)
=
0
c
=
7
3
o
r
c
=
1
Now
c
=
7
3
∈
(
1
,
3
)
c
=
7
3
f
'
(
c
)
=
0
⟹
3
c
2
−
10
c
−
3
=
0
c
=
10
±
√
100
+
36
6
c
=
10
±
√
136
6
=
10
±
√
2
34
6
=
5
±
√
34
3
=
3.61
,
−
0.28
None of these values
∈
(
1
,
3
)
Hence, Mean value theorem is not verified.
Suggest Corrections
0
Similar questions
Q.
Verify Mean Value Theorem, if
in the interval [
a
,
b
], where
a
= 1 and
b
= 3. Find all
for which