wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Verify Rolle's theorem for the function f(x)=x2+2,xϵ[2,2].

Open in App
Solution

Given f(x)=x2+2 is continuous in [2,2] and differentiable in (2,2)
Also f(a)=f(2)=(2)2+2=6
f(b)=f(2)=22+2=6
f(a)=f(b)=6
Value of f(x) at x=2 and 2 coincide
According to Rolle's theorem cϵ(a,b) such that
f1(c)=0
f1(x)=2x
f1(c)=2c=0
c=0ϵ(2,2).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems for Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon