To verify roots, put root inside equations x3+3x2−x−3
Root 1→13+3(1)2−1−3=1+3−1−3=0
Root(−1)=−13+3(−1)2+1−3=−1+3+1−3=0
Root (−3)=(−3)3+3(−3)2−(−3)−3=−27+27+3−3=0
Sum of root =−b/a=−3/1=−3
From roots =(1−1−3)=−3
Product of roots =−d/a=3/1=3
From roots =1∗−1∗−3=3
Product of roots =pq+qr+rp=c/a=−1/1=−1
From roots =1∗−1+−1∗−3+−3∗1=−1+3−3=−1 Hence verified.