Verify that 5, -2 and 13 are the zeros of the cubic polynomial p(x)=3x3−10x2−27x+10 and verify the relation between its zeros and coefficients.
p(x)=3x3–10x2–27x+10
Therefore, p(5)=3(5)3–10(5)2–27(5)+10
=375–250–135+10=0
p(−2)=3(−2)3–10(−2)2–27(−2)+10
=−24–40+54+10=0
p(1/3)=3(1/3)3–10(1/3)2–27(1/3)+10
=1/9−10/9−9+10=0
Therefore, Then, 5, -2, 13 zeros of
p(x)=3x3–10x2–27x+10
Therefore, α=5,β=−2,γ=13
Comparing the given polynomial with
p(x)=ax3+bx2+cx+d
We get a=3,b=−10,c=−27 and d=10
Now, (α+β+γ)=(5−2+13)=103=−ba
(αβ+βγ+γα)=[5×(−2)+(−2)×13+13×5)]=(−10−23+53)=−30−2+53=−273=ca
and αβγ=[5×(−2)×13]=−103=−da