f(x)=2x3+x2−5x+2
f(12)=2(13)3+(12)2−5(12)+2
=14+14−52+2=0
f(1)=2(1)3+(1)2−5(1)+2=2+1−5+2=0,
f(−2)=2(−2)3+(−2)25(−2)+2=−16+4+10+2=0.
Let α=12,β=1, and γ=−2
Now, Sum of zeros =α+β+γ=12+1−2=−12
Also, sum of zero =−(Coefficientofx2)Coefficient of x^3=−12
So, sum of zeros =α+β+γ=−Coefficientofx2Coefficient of x^3
Sum of product of zeros taken two at a time =αβ+βγ+γα
=12×1+1×(−2)+(−2)×12=−52
Also, αβ+βγ+γα=Coefficient of xCoefficient of x^3=−52
So, sum of product of zeros taken two at a time =αβ+βγ+γα=Coefficient of xCofficient of x^3
Now, Product of zeros =αβγ=(12)(1)(−2)=−1
Also, product of zeros =−Constant termCoefficient of x^3=−22=−1
∴ Product of zeros =αβγ=−Constant termCoefficient of x^3