(i) y=ex(acosx+bsinx)Differenttiating Both sides w.r.t.x
dydx=ddx[ex(acosx+bsinx)]
y′=d(ex)dx.[acosx+bsinx]+exddx[acosx+bsinx]
y′=ex[acosx+bsinx]=ex[−asinx+bcosx]
y′=y+ex[−asinx+bcosx] ...(1)
Again Differentiating both sides w.r.t.x
y′′=y′+d(ex)dx[−asinx+bcosx]+exddx[−asinx+bcosx]
y′′=y′+ex[−asinx+bcosx]=ex[−acosx+b(−sinx)]
y′′=y′+(y′−y)+ex[−acosx−bsinx] (From (1)]
y′′=2y′−y−ex[acosx+bsinx]
y′′=2y′−y−y (Using y=ex(acosx+bsinx)]
y′′=2y′−2y
y′′−2y′+2y=0
Which is the required differential equation
(ii) y=xsin3x;d2ydx2+9y−6cos3x=0
dydx=sin3x+3xcos3x
d2ydx2=3cos3x+3cos3x−9xsin3x
or d2ydx=6cos3x−9xsin3x
where xsin3x=y
d2ydx2=9y−6cos3x=0
This is the proof that y=xsin3x is the solution of the given differential equation.
(iii) x2=2y2logy;(x2+y2)dydx−xy=0
Differentiating both the sides we get;
2x=4ylogydydx+2y2ydydx
2x=dydx(4ylogy+2y)
∴x=dydx(2ylogy+y)
Multiplying both the sides by y, we get,
xy=dydx (2y2logy+y2)
Therefore (x2+y2)dydx−xy=0
Hence proved.