CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.
(i) y=ex(acosx+bsinx) : d2ydx22dydx+2y=0
(ii) y=xsin3x : d2ydx2+9y6cos3x=0
(iii) x2=2y2logy : (x2+y2)dydxxy=0

Open in App
Solution

(i) y=ex(acosx+bsinx)
Differenttiating Both sides w.r.t.x
dydx=ddx[ex(acosx+bsinx)]
y=d(ex)dx.[acosx+bsinx]+exddx[acosx+bsinx]
y=ex[acosx+bsinx]=ex[asinx+bcosx]
y=y+ex[asinx+bcosx] ...(1)
Again Differentiating both sides w.r.t.x
y′′=y+d(ex)dx[asinx+bcosx]+exddx[asinx+bcosx]
y′′=y+ex[asinx+bcosx]=ex[acosx+b(sinx)]
y′′=y+(yy)+ex[acosxbsinx] (From (1)]
y′′=2yyex[acosx+bsinx]
y′′=2yyy (Using y=ex(acosx+bsinx)]
y′′=2y2y
y′′2y+2y=0
Which is the required differential equation

(ii) y=xsin3x;d2ydx2+9y6cos3x=0
dydx=sin3x+3xcos3x
d2ydx2=3cos3x+3cos3x9xsin3x
or d2ydx=6cos3x9xsin3x
where xsin3x=y
d2ydx2=9y6cos3x=0
This is the proof that y=xsin3x is the solution of the given differential equation.

(iii) x2=2y2logy;(x2+y2)dydxxy=0
Differentiating both the sides we get;
2x=4ylogydydx+2y2ydydx
2x=dydx(4ylogy+2y)
x=dydx(2ylogy+y)
Multiplying both the sides by y, we get,
xy=dydx (2y2logy+y2)
Therefore (x2+y2)dydxxy=0
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon