1) Given, y=ex+1; y′′−y=0
For ex. y′′−y=0⇒d2ydx2–y=0
⇒d2ydx2=y …(1)
For this type of equation solunation is
y=ex+c C∈R
And it satisfies the above eqn.
So, y=ex+1
2) y′−2x−2=0
⇒dydx=2x+2
⇒dy=(2x+2)dx
Integrating on both sides, we get
∫dy=∫(2x+2)dx
y=x2+2x+c,C∈R
3) y′+sinx=0
⇒dydx+sin=0
⇒dy=sindx
Integrating on both side
∫dy=∫sinxdx
⇒y=+cosx+c {∫sinxdx=cotx}
4) y′=xy1+x2
⇒dydx=xy1=x2
⇒dyy=xdx1+x2
⇒∫dyy=∫xdx1+x2
Let x2+1=t
2xdx=dt±xdx=dt2
⇒ln(y)=12 ∫dt(1pt)
⇒ln(y)=12[ln(1+2)]+c,c∈R
⇒ taking c=0
ln(y)=12ln(1+1)=ln(1+1)1/2
y=(1+1)1/2
y=√1+x2
5) y=Ax; xy=y(x≠0)
xdydx=y⇒dyy=dxx⇒∫dyy=∫dxx
ln(y)=ln(x)+ln(A)⇒ln(y)=ln(Ax),A∈R
⇒y=Ax
9) x+y=tan−1y; y2y′+y2+1=0
y2y1=−(1+y2)
y1=−(1+y2)y2
y2y11+y2=(−1)
∫y21+y2dy=∫–dx
⇒∫1+y2−11+y2dy=−∫dx
=∫dy−∫11+y2dy=−∫dx
⇒y−tan−1(y)=−x+c
⇒x+y=tan−1(y)+c
10) y=√a2−x2xϵ(−a,a); x+ydydx=0(y≠0)
x+ydydx=0⇒dydx=−xy
∫ydy=∫–xdx
y22=∫–xdx
y2=a−x2
y=√a2−x2,xϵ(−a,a)