wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:

1. y=ex+1 : y′′y=0
2. y=x2+2x+C : y2x2=0
3. y=cosx+C : y+sinx=0
4. y=1+x2 : y=xy1+x2
5. y=Ax : xy=y(x0)
6. y=xsinx : xy=y+xx2y2(x0andx>yorx<y)
7. xy=logy+C : y=y21xy(xy1)
8. ycosy=x : (ysiny+cosy+x)y=y
9. x+y=tan1y : y2y+y2+1=0
10. y=a2x2xϵ(a,a) : x+ydydx=0(y0)

Open in App
Solution

1) Given, y=ex+1; y′′y=0

For ex. y′′y=0d2ydx2y=0

d2ydx2=y …(1)

For this type of equation solunation is

y=ex+c CR

And it satisfies the above eqn.

So, y=ex+1


2) y2x2=0

dydx=2x+2

dy=(2x+2)dx

Integrating on both sides, we get

dy=(2x+2)dx

y=x2+2x+c,CR


3) y+sinx=0

dydx+sin=0

dy=sindx

Integrating on both side

dy=sinxdx

y=+cosx+c {sinxdx=cotx}


4) y=xy1+x2

dydx=xy1=x2

dyy=xdx1+x2

dyy=xdx1+x2

Let x2+1=t

2xdx=dt±xdx=dt2

ln(y)=12 dt(1pt)

ln(y)=12[ln(1+2)]+c,cR

taking c=0

ln(y)=12ln(1+1)=ln(1+1)1/2

y=(1+1)1/2

y=1+x2


5) y=Ax; xy=y(x0)

xdydx=ydyy=dxxdyy=dxx

ln(y)=ln(x)+ln(A)ln(y)=ln(Ax),AR

y=Ax


9) x+y=tan1y; y2y+y2+1=0

y2y1=(1+y2)

y1=(1+y2)y2

y2y11+y2=(1)

y21+y2dy=dx

1+y211+y2dy=dx

=dy11+y2dy=dx

ytan1(y)=x+c

x+y=tan1(y)+c


10) y=a2x2xϵ(a,a); x+ydydx=0(y0)

x+ydydx=0dydx=xy

ydy=xdx

y22=xdx

y2=ax2

y=a2x2,xϵ(a,a)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon