Let x+y=tan−1y
Differentiating both sides w.r.t. x we get,
ddx[x+y]=ddx[tan−1y]
dxdx+dydx=11+y2.dydx
1=11+y2.dydx−dydx
1=dydx[11+y2−1]
1=dydx[1−1−y21+y2]
1=dydx[−y21+y2]
dydx=−1+x2y2
dydx=y′
y′=−1+y2y2
Taking LHS
Putting
y′=−1+y2y2
y2y′+y2+1
=y2[−(1−y2)y2−1]+y2+1
y2y′+y2+1=−(1+y2)+y2+1
y2y′+y2+1=−1−y2+y2+1
y2y′+y2+1==0
Thus LHS=RHS
Hence verified.
Final answer:
Hence, the function x+y=tan−1y is a solution of the differential equation y2y′+y2+1=0.