Let y−cos y=x
Differentiating both sides w.r.t. x we get,
ddx[y−cos y]=dxdx
d(y)dx−d[cos y]dx=1
dydx−(−sin y)dydx=1
dydx+sin ydydx=1
dydx[1+sin y]=1
dydx=11+sin y
dydx=y′
y′=11+sin y
Taking LHS
Putting x=y−cos y(y sin y)+cos y+x)y′
=[y sin y+cos y+y−cos y]y′(y sin y+cos y+x)y′=[y sin y+y]y′(y sin y+cos y+x)y′=y(1+sin y)y′
Putting
y′′=11+sin y
(y sin y+cos‘y+x)y′
=y(1+sin y)[11+sin y]
(y sin y+cos y+x)y′=y
Thus LHS=RHS
Hence verified.
Final answer:
Hence, the fuction y−cos y=x is a solution of the differential equation (y sin y+cos y+x)y′=y