wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:
ycos y=x:(y sin y+cos y+x)y=y

Open in App
Solution

Let ycos y=x
Differentiating both sides w.r.t. x we get,
ddx[ycos y]=dxdx
d(y)dxd[cos y]dx=1
dydx(sin y)dydx=1
dydx+sin ydydx=1
dydx[1+sin y]=1
dydx=11+sin y
dydx=y
y=11+sin y
Taking LHS
Putting x=ycos y(y sin y)+cos y+x)y
=[y sin y+cos y+ycos y]y(y sin y+cos y+x)y=[y sin y+y]y(y sin y+cos y+x)y=y(1+sin y)y
Putting
y′′=11+sin y
(y sin y+cosy+x)y
=y(1+sin y)[11+sin y]
(y sin y+cos y+x)y=y
Thus LHS=RHS
Hence verified.

Final answer:
Hence, the fuction ycos y=x is a solution of the differential equation (y sin y+cos y+x)y=y

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon