Let y=x sin x
Differentiating both sides w.r.t. x we get,
y′=(x sin x)′
y′=(x)′sin x+x.(sin x)′
y′=1.sin x+x(cos x)
y′=sin x+x cos x
Taking LHS
Putting
y′=sin x+x cos x
xy′=x(sin x+x cos x)
xy′=x sin x+x2cos x
Taking RHS
Putting y=x sin x
y+x√x2−y2=x sin x+x√x2−(x sin x)2
y+x√x2−y2=x sin x+x√x2(1−sin2x)(1−sin2x=cos2x)
y+x√x2−y2=x sin x+x2√cos2x
y+x√x2−y2=x sin x+x2cos x
Thus LHS=RHS
Hence verified.
Final answer:
Hence, the function y=x sin x is a solutio of the differential equation xy′=y+x√x2−y2