Let y=√a2−b2
Differentiating both sides w.r.t. x we get,
dydx=d(√a2−b2)dx
dydx=12√a2−b2×(−2x)
dydx=−x√(a2−b2)
Taking LHS
Putting
dydx=−x√(a2−b2)
x+ydydx=x+y[−x√a2−b2]
Putting y=√a2−b2
x+ydydx=x+√a2−x2[−x√a2−b2]
x+ydydx=x−x
x+ydydx=0
Thus LHS=RHS
Hence verified.
Final aswer:
Hence, the function y=√a2−x2 is a solution of the differernitial equation x+ydydx=0.