Let xy=log y+C
Differentiating both sides w.r.t. x we get,
d(xy)dx=ddx[log(y)+C]
d(x)dx.y+xd(y)dx=d[logy]dx+dCdx
1.y+xdydx=1y.dydx+0
y+xdydx=1y.dydx
y=1y.dydx−x.dydx
y=dydx[1y−x]
y=dydx[1−xyy]
dydx=y21−xy
dydx=y′
y′=y21−xy
Thus LHS=RHS
Hece verified.
Final answer:
Hence, the function xy=logy+C is a solution of the differential equation y′=y21−xy.