wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Verify that y2=4a(x+a) is a solution of the differential equation y{1(dydx)2}=2xdydx.

Open in App
Solution

Given, y2=4a(x+a)

Differentiating both side w.r.t. x, we get,

ddxy2=ddx4a(x+a)

2ydydx=ddx4ax+ddx4a2

2ydydx=4a+0

dydx=2ay

Now,

y{1(dydx)2}=2xdydx

L.H.S=y{1(dydx)2}

Put the value of dydx=2ay

=y{1(2ay)2}

=y{1(4a2y2)}

=y(y24a2y2)

Simplifying

=(y24a2y)

Given, y2=4a(x+a)

=(4a(x+a)4a24a(x+a))

=(4ax+4a24a24a(x+a))

=(4ax4a(x+a))

=2x(2a4a(x+a))

=2x(2ay)

=2xdydx

=R.H.S

y2=4a(x+a) is a solution for the differential equation y{1(dydx)2}=2xdydx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon