Verify that y2=4a(x+a) is a solution of the differential equation y1-dydx2=2xdydx.
Step 1: Differentiation:
Differentiating y2=4a(x+a) w.r.t. x:
ddxy2=ddx4a(x+a)2ydydx=ddx4ax+ddx4a22ydydx=4a+0dydx=2ay
Step 2: Verifying y2=4a(x+a) is a solution of the differential equation y1-dydx2=2xdydx:
Taking L.H.S., we get,
y1-dydx2=y1-2ay2=y1-4a2y2=yy2-4a2y2=4a(x+a)-4a2y(∵y2=4a(x+a))=4ax+4a2-4a2y=4axy=2x2ay=2xdydx=R.H.S.
Hence, y2=4a(x+a) is a solution of the differential equation y1-dydx2=2xdydx.