Verify the following :
(i) (0, 7, -10), (1, 6, -6) and (4, 9, -6) are vertices of an isosceles triangle.
(ii) (0, 7, 10), (-1, 6, 6) and (-4, 9, 6) are vertices of a right-angled triangle.
(iii) (-1, 2, 1), (1, -2, 5), (4, -7, 8) and (2, -3, 4) are vertices of a parallelogram.
(iv) (5, -1, 1), (7, -4, 7) , (1, -6, 10) and (-1,-3, 4) are vertices of a rhombus.
Here, A(0, 7, -10), B(1, 6, -6), C(4, 9, -6)
AB = √(1−0)2+(6−7)2+(−6+10)2
=√1+1+16
=3√2 units
BC = √(4−1)2+(9−6)2+(−6+6)2
=√9+9
=3√2 units
CA = √(0−4)2+(7−9)2+(−10+6)2
=√16+4+16
=6 units
Since, AB = BC
So, △ABC is an isosceles △
(ii) Here, A(0, 7, 10), B(-1, 6, 6), C(-4, 9, 6)
AB = √(−1−0)2+(6−7)2+(6−10)2
=√1+1+16
=3√2 units
BC=√(−4+1)2+(9−6)2+(6−6)2
=√9+9+0
3√2 units
AC=√(−4−0)2+(9−7)2+(6−10)2
=√16+4+16
=√36 units
Since, (AB)2+(BC)2=(AC)2
So, △ABC is a right triangle.
(iii) Here, A(-1, 2, 1), B(1, -2, 5), C(4, -7, 8), D(2, -3, 4)
AB=√(1+1)2+(−2−2)2+(5−1)2
=√4+16+16
=6 units
BC = √(4−1)2+(−7+2)2+(8−5)2
=√9+25+9
=√43 units
CD = √(2−4)2+(−3+7)2+(4−8)2
=√4+16+16
=6 units
DA = √(1+2)2+(2+3)2+(1−4)2
=√9+25+9
=√43 units
Since, AB = CD and BC = DaA
So, △ABC is a parallelogram
(iv) Here, A(5, -1, 1), B(7, -4, 7), C(1, -6, 10), D(-1, -3, 4)
AB =√(7−5)2+(−4+1)2+(7−1)2
=√4+9+36 = √49 = 7 units
BC =√(1−7)2+(−6+4)2+(10−7)2
=√36+4+9
=√49=7 units
CD = √(−1−1)2+(−3+6)2+(4−10)2
= √4+9+36=√49 = 7 units
DA = √(−1−5)2+(−3+1)2+(4−1)2
√36+4+9=√49=7 units
∴ AB = BC = CD = DA
Since all the sides are equal.
Thus quadrilateral ABCD is a rhombus.