Verify the property: x×(y×z)=(x×y)×z by taking:
(i) x=−73,y=125,z=49
(ii) x=0,y=−35,z=−94
(iii) x=12,y=5−4,z=−75
(iv)x=57,y=−1213,z=−718
(i)x×(y×z)=(x×y)×z x=−73,y=125,z=49L.H.S.=x×(y×z)=−73×(125×49)=−73×(4×45×3)=−73×1615=−7×163×15=−11245R.H.S.=(x×y)×z=(−73×125)49=−7×41×5×49=−285×49=−28×45×9=−11245∴L.H.S.=R.H.S.
(ii) x×(y×z)=(x×y)×z x=0,y=−35,z=−94L.H.S.=x×(y×z)=0×(−35×−94)=0×(−3)×(−9)5×4=0×2720=0R.H.S.=(x×y)×z=(0×−35)×−94=0×−94=0∴L.H.S.=R.H.S.
(iii) x×(y×z)=(x×y)×zx=12,y=5−4,z=−75L.H.S.=x×(y×z)=12×(5−4−75)=12(5×(−7)−4×5)=12×(−74)=12×74=1×72×4=78R.H.S.=(x×y)×z=(12×5−4)×−75=1×52×(−4)×−75=5−8×−75=5×(−7)−8×5=1×(−7)−8×1=−7−8=78∴L.H.S.=R.H.S.
(iv)x×(y×z)=(x×y)×zx=57,y=−1213,z=−718L.H.S.=x×(y×z)=57×(−1213×−718)=57×(−12×(−7)13×18)=57×−2×(−7)13×3=57×1439=5×147×39=5×21×39=1039R.H.S.=(x×y)×z=(57×−1213)×−718=5×(−12)7×13×−718=−6091×−718=−60×(−7)91×18=−10×(−1)13×3=1039∴L.H.S.=R.H.S.