Given:g(x)=x3−6x2+11x−6;x=1,2,3
We know that, if f(a)=0; then a is the zero of the polynomial f(x)
∴f(1)=(1)3−6×(1)2+11×(1)−6
=1−6+11−6=0
f(2)=(2)3−6×(2)2+11×(2)−6
=8−24+22−6=0
And f(3)=(3)3−6×(3)2+11×(3)−6
=27−54+33−6=0
∵f(1)=0,f(2)=0 and f(3)=0
Hence, x=1,2,3 is the zero of f(x)=x3−6x2+11x−6, verified.