The correct option is
A √1072Vertices of a triangle are given by
^i+3^j+2^k,2^i−^j+^k,−^i+2^j+3^kLet, the vertices of the triangle be A, B and C . and O be the fixed point.
Then, →0A=^i+3^j+2^k=(1,3,2)→OB=2^i−^j+^k=(2,−1,1)→OC=−^i+2^j+3^k=(−1,2,3)
Now, →AB=→OB−→OA=(1,−4,−1)→AC=→OC−→OA=(−2,−1,1)
Hence, →AB×→AC=∣∣
∣
∣∣^i^j^k1−4−1−2−11∣∣
∣
∣∣=^i(−4−1)−^j(1−2)+^k(−1−8)=−5^i+^j−9^k
∴|→AB×→AC|=√(−5)2+(1)2+(−9)2=√107units
And, the area if the triangle is given by, 12|→AB×→AC|=12√107=√1072units2
∴ option A is correct.