Differentiation of Inverse Trigonometric Functions
Volume of the...
Question
Volume of the parallelopiped whose adjacent edges are vectors ¯¯¯a,¯¯b,¯¯c is
A
32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
32√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
64
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
64√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B32√2 iven ∣∣¯¯¯a∣∣=∣∣¯¯b∣∣=∣∣¯¯c∣∣=4or∣∣¯¯¯a∣∣2=∣∣¯¯b∣∣2=∣∣¯¯c∣∣2=16 and ¯¯¯a⋅¯¯b=¯¯b⋅¯¯c=¯¯c⋅¯¯¯a=8 ∴cosθ1=cosθ2=cosθ3=12 ⇒θ1=θ2=θ3=π3 and ¯¯¯a⋅¯¯¯a=¯¯b⋅¯¯b=¯¯c⋅¯¯c=16,¯¯¯a2=¯¯b2=¯¯c2=16 Also [¯¯¯a¯¯b¯¯c][¯¯¯x¯¯¯y¯¯¯z]=∣∣
∣
∣∣¯¯¯a⋅¯¯¯x¯¯b⋅¯¯¯x¯¯c⋅¯¯¯x¯¯¯a⋅¯¯¯y¯¯b⋅¯¯¯y¯¯c⋅¯¯¯y¯¯¯a⋅¯¯¯z¯¯b⋅¯¯¯z¯¯c⋅¯¯¯z∣∣
∣
∣∣ [¯¯¯a¯¯b¯¯c]2=[¯¯¯a¯¯b¯¯c][¯¯¯a¯¯b¯¯c]=∣∣
∣
∣∣¯¯¯a⋅¯¯¯a¯¯b⋅¯¯¯a¯¯c⋅¯¯¯a¯¯¯a⋅¯¯b¯¯b⋅¯¯b¯¯c⋅¯¯b¯¯¯a⋅¯¯c¯¯b⋅¯¯c¯¯c⋅¯¯c∣∣
∣
∣∣ ⇒[¯¯¯a¯¯b¯¯c]2=∣∣
∣∣168881688816∣∣
∣∣=512∣∣
∣∣211121112∣∣
∣∣=1024×2 ∣∣[¯¯¯a¯¯b¯¯c]∣∣=32√2 ......( * ) Volume of parallelopiped with edges ¯¯¯a,¯¯b,¯¯c is given by ∣∣[¯¯¯a¯¯b¯¯c]∣∣ ∴∣∣[¯¯¯a¯¯b¯¯c]∣∣=32√2