We call a a good number if inequality 2x2+2x+3x2+x+1≤a is satisfied for any real x. Find the smallest good integral number
Open in App
Solution
2x2+2x+3x2+x+1≤a ⇒x2(2−a)+x(2−a)+3−a≤0 ⇒D≥0and2−a<0 ⇒(2−a)2−4(2−a)(3−a)≥0 ⇒(2−a)(3a−10)≥0 ⇒3a−10≥0 (∵2−a<0) ⇒a∈[103,∞) So, the smallest good integer is 4