Given,
Mass of nitrogen \((𝑚)= 2 \times 10^{−2}~ 𝑘𝑔 = 20~𝑔\)
Rise in temperature \((\bigtriangleup 𝑇)=45^{\circ}𝐶\)
Molecular mass of \(N_{2}, 𝑀=28\)
Universal gas constant, \(𝑅=8.3~ 𝐽~𝑚𝑜𝑙^{−1} 𝑘^{−1}\)
Number of moles of \(𝑁_{2}\)
\( 𝑛=\dfrac{𝑚}{𝑀}=\dfrac{20}{28}=0.714~ 𝑚𝑜𝑙\)
Molar specific heat at constant pressure for \(N_{2}:\)
\( 𝐶_{𝑃}=\dfrac{7𝑅}{2}\)
Putting the value of \(R\)
\(𝐶_{𝑃}=\dfrac{7 \times 8.3}{2}=29.05~ 𝐽~𝑚𝑜𝑙^{−1} 𝑘^{−1}\)
Total amount of heat supplied will be,
\(\bigtriangleup 𝑄=𝑛𝐶_{𝑃} \bigtriangleup 𝑇\)
\( =0.714 \times 29.05 \times 45\)
\( =933.38~ 𝐽\)