Calculation for emitted energy
En=−2.18×10−18×z2n2J
Δ E=Ef−Ei=2.18×10−18⎡⎣1n2f−1n2f⎤⎦
Where, ni→ initial energy~(orbit=5)
nf→ final energy~(orbit=2)
(This transition gives rise to a spectral line in the visible region of the Balmer series.)
Δ E=2.18×10−18[152−122] J
=2.18×10−18[4−2525×4]J
=−2.18×10−18×21100J
Δ E=−4.58×1019J
It is the emission energy,now we have to find out correspondig frequency and wavelength
Calculation for frequency (v)
∵ We know that ΔE=hv=hcλ
⇒ v=ΔEh
Where,h=planck constant=6.626×10−34Js
ΔE=emission energy=4.58×10−19J
v=?(Frequency)
Susbstituting the values in the equation, we get
v=4.58×10−19J6.626×1024Js=0.691×10−19+34
v=6.91×1014Hz(sec−1)
Calculation for wavelength (λ)
∵ We know, ΔE=hv=hcλ{v=cλ}
Where,c→ velocity of the light=3×108ms−1
λ → wavelength of the photon=?
⇒ λ =hcΔE=6.626×10−34Js×3×108ms−14.58×10−19J
λ = 19.878×10−34+84.58×10−19m
λ = 4.34×10−34+8+19=4.34×10−7m
λ = 434×10−9=434nm {1 nm=10−9m}
Final answer: v=6.91×1014Hz
λ = 434nm