wiz-icon
MyQuestionIcon
MyQuestionIcon
9
You visited us 9 times! Enjoying our articles? Unlock Full Access!
Question

What are the minimum and maximum values of the function x5-5x4+5x3-10.


Open in App
Solution

Step 1: Finding the critical points

Given: fx=x5-5x4+5x3-10

Differentiate the given function with respect to x.

f'x=5x4-20x3+15x2 .......1

For critical point substitute f'x=0. We get

5x4-20x3+15x2=0

5x2x2-4x+3=0

5x2x2-3x-x+3=0

5x2xx-3-1x-3=0

5x2x-3x-1=0

5x2=0,x-3=0,x-1=0

x=0,x=3,x=1

Thus,x=0,1,3 these are the critical points.

Step 2: Substituting the value of critical points in the second derivative of the function

Differentiate equation 1 with respect to x, we get

f''x=20x3-60x2+30x

Substitute x=0, we get

f''0=200-600+300

f''0=0

There is no maximum and no minimum value at x=0.

Substitute x=1, we get

f''1=2013-6012+301

f''1=201-601+301

f''1=20-60+30

f''1=-10<0

The function fx is maximum at x=1.

Substitute x=3, we get

f''3=2033-6032+303

f''3=2027-609+90

f''3=540-540+90

f''3=90>0

The function fx is minimum at x=3.

Step 3: Finding the minimum and maximum values of the function

The maximum value of fx is f1.

f1=15-514+513-10

f1=1-5+5-10

f1=-9

The minimum value of fx is f3.

f3=35-534+533-10

f3=243-581+527-10

f3=243-405+135-10

f3=-37

Hence, for the function x5-5x4+5x3-10 the minimum value is -37 and the maximum value is -9.


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon