The correct option is C 13x−16y=2a , 16x+13y=9a
Given x=2at21+t2, y=2at31+t2
At t=12 we get
x=2a5 , y=a5
Hence, the point is (2a5,a5)
Now, dxdt=2a(1+t2)2t−2t3(1+t2)2=4at(1+t2)2
dydt=2a(1+t2)3t2−t3(2t)(1+t2)2=2a(3t2+t4)(1+t2)2
Now, dydx=(3t2+t4)2t
Slope of tangent at t=12 is 1316a
Equation of tangent at (2a5,a5) is
y−a5=1316a(x−2a5)
⇒13x−16y=2a
Equation of normal at (2a5,a5) is
y−a5=−16a13(x−2a5)
⇒16x+13y=9a