wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

What do you mean by holoblastic cleavage?

Open in App
Solution

In embryology, cleavage is the division of cells in the early embryo. The process follows fertilization, with the transfer being triggered by the activation of a cyclin-dependent kinase complex.[1]. The zygotes of many species undergo rapid cell cycles with no significant overall growth, producing a cluster of cells the same size as the original zygote. The different cells derived from cleavage are called blastomeres and form a compact mass called the morula. Cleavage ends with the formation of the blastula.

Depending mostly on the amount of yolk in the egg, the cleavage can be holoblastic (total or entire cleavage) or meroblastic (partial cleavage). The pole of the egg with the highest concentration of yolk is referred to as the vegetal pole while the opposite is referred to as the animal pole.

Cleavage differs from other forms of cell division in that it increases the number of cells without increasing the cytoplasmic mass. This means that with each successive subdivision, there is roughly half the cytoplasm in each daughter cell than before that division, and thus the ratio of nuclear to cytoplasmic material increases.[2]Holoblastic[edit]
In the absence of a large concentration of yolk, four major cleavage types can be observed in isolecithal cells (cells with a small even distribution of yolk) or in mesolecithal cells (moderate amount of yolk in a gradient) – bilateral holoblastic, radial holoblastic, rotational holoblastic, and spiral holoblastic, cleavage.[3] These holoblastic cleavage planes pass all the way through isolecithal zygotes during the process of cytokinesis. Coeloblastula is the next stage of development for eggs that undergo these radial cleavaging. In holoblastic eggs, the first cleavage always occurs along the vegetal-animal axis of the egg, the second cleavage is perpendicular to the first. From here, the spatial arrangement of blastomeres can follow various patterns, due to different planes of cleavage, in various organisms.
Bilateral
The first cleavage results in bisection of the zygote into left and right halves. The following cleavage planes are centered on this axis and result in the two halves being mirror images of one another. In bilateral holoblastic cleavage, the divisions of the blastomeres are complete and separate; compared with bilateral meroblastic cleavage, in which the blastomeres stay partially connected.
Radial
Radial cleavage is characteristic of the deuterostomes, which include some vertebrates and echinoderms, in which the spindle axes are parallel or at right angles to the polar axis of the oocyte.
Rotational
Rotational cleavage involves a normal first division along the meridional axis, giving rise to two daughter cells. The way in which this cleavage differs is that one of the daughter cells divides meridionally, whilst the other divides equatorially.
Mammals display rotational cleavage, and an isolecithal distribution of yolk (sparsely and evenly distributed). Because the cells have only a small amount of yolk, they require immediate implantation onto the uterine wall in order to receive nutrients.
The nematode C. elegans, a popular developmental model organism, undergoes holoblastic rotational cell cleavage.[4]
Spiral
Spiral cleavage is conserved between many members of the lophotrochozoan taxa, referred to as Spiralia.[5] Most spiralians undergo equal spiral cleavage, although some undergo unequal cleavage (see below).[6] This group includes annelids, molluscs, and sipuncula. Spiral cleavage can vary between species, but generally the first two cell divisions result in four macromeres, also called blastomeres, (A, B, C, D) each representing one quadrant of the embryo. These first two cleavages are not oriented in planes that occur at right angles parallel to the animal-vegetal axis of the zygote.[5] At the 4-cell stage, the A and C macromeres meet at the animal pole, creating the animal cross-furrow, while the B and D macromeres meet at the vegetal pole, creating the vegetal cross-furrow.[7] With each successive cleavage cycle, the macromeres give rise to quartets of smaller micromeres at the animal pole.[8][9] The divisions that produce these quartets occur at an oblique angle, an angle that is not a multiple of 90°, to the animal-vegetal axis.[9] Each quartet of micromeres is rotated relative to their parent macromere, and the chirality of this rotation differs between odd and even numbered quartets, meaning that there is alternating symmetry between the odd and even quartets.[5] In other words, the orientation of divisions that produces each quartet alternates between being clockwise and counterclockwise with respect to the animal pole.[9] The alternating cleavage pattern that occurs as the quartets are generated produces quartets of micromeres that reside in the cleavage furrows of the four macromeres.[7] When viewed from the animal pole, this arrangement of cells displays a spiral pattern.
D quadrant specification through equal and unequal cleavage mechanisms. At the 4-cell stage of equal cleavage, the D macromere has not been specified yet. It will be specified after the formation of the third quartet of micromeres. Unequal cleavage occurs in two ways: asymmetric positioning of the mitotic spindle, or through the formation of a polar lobe (PL).
Specification of the D macromere and is an important aspect of spiralian development. Although the primary axis, animal-vegetal, is determined during oogenesis, the secondary axis, dorsal-ventral, is determined by the specification of the D quadrant.[9] The D macromere facilitates cell divisions that differ from those produced by the other three macromeres. Cells of the D quadrant give rise to dorsal and posterior structures of the spiralian.[9] Two known mechanisms exist to specify the D quadrant. These mechanisms include equal cleavage and unequal cleavage.
In equal cleavage, the first two cell divisions produce four macromeres that are indistinguishable from one another. Each macromere has the potential of becoming the D macromere.[8] After the formation of the third quartet, one of the macromeres initiates maximum contact with the overlying micromeres in the animal pole of the embryo.[8][9] This contact is required to distinguish one macromere as the official D quadrant blastomere. In equally cleaving spiral embryos, the D quadrant is not specified until after the formation of the third quartet, when contact with the micromeres dictates one cell to become the future D blastomere. Once specified, the D blastomere signals to surrounding micromeres to lay out their cell fates.[9]
In unequal cleavage, the first two cell divisions are unequal producing four cells in which one cell is bigger than the other three. This larger cell is specified as the D macromere.[8][9] Unlike equally cleaving spiralians, the D macromere is specified at the four-cell stage during unequal cleavage. Unequal cleavage can occur in two ways. One method involves asymmetric positioning of the cleavage spindle.[9] This occurs when the aster at one pole attaches to the cell membrane, causing it to be much smaller than the aster at the other pole.[8] This results in an unequal cytokinesis, in which both macromeres inherit part of the animal region of the egg, but only the bigger macromere inherits the vegetal region.[8] The second mechanism of unequal cleavage involves the production of an enucleate, membrane bound, cytoplasmic protrusion, called a polar lobe.[8] This polar lobe forms at the vegetal pole during cleavage, and then gets shunted to the D blastomere.[7][8] The polar lobe contains vegetal cytoplasm, which becomes inherited by the future D macromer

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Female Reproductive Part
BIOLOGY
Watch in App
Join BYJU'S Learning Program
CrossIcon