wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

What does the equation (xa)2+(yb)2=c2 become when it is transferred to parallel axes through
(1) the point (ac,b),
(2) the point (a,bc)?

Open in App
Solution

(xa)2+(yb)2=c2..........(1)
Let a point on the circle with respect to old axis be (x,y)
Let the same point on the circle with respect to new axis be (x,y)

1) The axes are shifted by (ac,b)
So, x=x+ac and y=y+b
Putting the value of x and y in equation (1), we get
(x+aca)2+(y+bb)2=c2
or, (xc)2+y2=c2
or, x22cx+c2+y2=c2
or, x2+y2=2cx

2) The axes are shifted by (a,bc)
So, x=x+a and y=y+bc
Putting the value of x and y in equation (1), we get
(x+aa)2+(y+bcb)2=c2
or, x2+(yc)2=c2
or, x2+y22cy+c2=c2
or, x2+y2=2cy


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon