Definition of aluminothermy. : a process of producing great heat and strong chemical reduction by oxidizing finely divided aluminum with oxygen taken from another metal, this metal being thus reduced from its oxide (as molten iron is obtained from iron oxide in welding by the Thermit process)
Aluminothermic reactions are exothermic chemical reactions using aluminium as the reducing agent at high temperature. The process is industrially useful for production of alloys of iron. The most prominent example is the thermite reaction between iron oxides and aluminium to produce iron itself:
Fe2O3 + 2 Al → 2 Fe + Al2O3
This specific reaction is however not relevant to the most important application of aluminothermic reactions, the production of ferroalloys. For the production of iron, a cheaper reducing agent, coke, is used instead via the carbothermic reaction.
The aluminothermic reaction is used for the production of several ferroalloys, for example ferroniobium from niobium pentoxide and ferrovanadium from iron, vanadium(V) oxide, and aluminium. The process begins with the reduction of the oxide by the aluminium:
3 V2O5 + 10 Al → 5 Al2O3 + 6 V
Other metals can be produced from their oxides in the same way.
Aluminothermic reactions have been used to welding rail tracks on-site, useful for complex installations or local repairs that cannot be done using continuously welded rail. Another common use is the welding of copper cables (wire) for use in direct burial (grounding/earthing) applications.