Solution:-As we know that,
ΔHvap.=ΔU+ΔngRT
whereas,
ΔHvap.= standard enthalpy of vaporization
ΔU= Internal energy
T= Temperature of liquid =100℃=(100+273)K=373K
R= Universal gas constant =8.314×10−3KJK−1mol−1
Δng= Difference between no. of moles of gaseous reactant and gaseous product.
Given that the heat of vaporisation of water at 100℃ is 40.66KJmol−1.
For vaporization of 2 moles of water,
2H2O(l)⟶2H2O(g)
ΔHvap.=2×40.66=81.32KJmol−1
Δng=nP−nR=2−0=2
Now fro eqn(1), we have
81.32=ΔU+2×8.314×10−3×373
⇒ΔU=81.32−6.202=74.118KJ/mol
Hence when 2 mole of liquid water vaporises at 100℃,ΔU will be 74.118KJ/mol.