What is (1+secθ−tanθ)cosθ(1+secθ+tanθ)(1−sinθ) equal to
We have,
=(1+secθ−tanθ)cosθ(1+secθ+tanθ)(1−sinθ)
=(1+1cosθ−sinθcosθ)cosθ(1+1cosθ+sinθcosθ)(1−sinθ)
=(cosθ+1−sinθ)cosθ(cosθ+1+sinθ)(1−sinθ)
=(cos2θ+cosθ−sinθcosθ)(cosθ+1+sinθ−cosθsinθ−sinθ−sin2θ)
=(cos2θ+cosθ−sinθcosθ)(cosθ−cosθsinθ+cos2θ)[∵cos2θ=1−sin2θ]
=(cos2θ+cosθ−sinθcosθ)(cos2θ+cosθ−cosθsinθ)
=1
Hence, this is the answer.