What is ∫tan−1(secx+tanx)dx equal to?
secx+tanx=1+sinxcosx=(cosx2+sinx2)2cos2x2−sin2x2=cosx2+sinx2cosx2−sinx2=1+tanx21−tanx2=tan(π4+x2)
=tan−1(tan(π4+x2))=π4+x2⇒∫π4+x2dx=π4x+x24+c
So correct answer will be option A.