We have,
⎡⎢ ⎢ ⎢ ⎢⎣sinπ6+i(1−cosπ6)sinπ6−i(1−cosπ6)⎤⎥ ⎥ ⎥ ⎥⎦2
Now,
⎡⎢
⎢
⎢
⎢
⎢
⎢⎣12+i(1−√32)12−i(1−√32)⎤⎥
⎥
⎥
⎥
⎥
⎥⎦2
⇒[12+i(1−√32)]2[12−i(1−√32)]2
⇒14+i2(1−√32)2+2×12i(1−√32)14+i2(1−√32)2−2×12i(1−√32)∴i2=−1
⇒14−1(12+34−2×√32)+i(1−√32)14−1(12+34−2×√32)−i(1−√32)
⇒1−4−3+4√3+2i(2−√3)41−4−3+4√3−2i(2−√3)4
⇒−6+4√3+2i(2−√3)−6+4√3−2i(2−√3)∴i=√−1
⇒−6+4√3+2√−1(2−√3)−6+4√3−2√−1(2−√3)
Hence, this is the answer.