wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

What is remainder theorem?

Open in App
Solution


Concept Of Remainder
Remainders is a very crucial concept since numerous questions from Quantitative Aptitude section require the concepts of remainder to solve them. Most of the candidates have already studied this concept in their elementary schools and can solve the related questions. Here is a lesson on Remainders to help the candidates revise the topic in an efficient way.

What is Remainder:-
Supposing a number "N" is divided by another number "x"; if the quotient obtained is "Q" and the remainder obtained is "R", then the number can be expressed as N = Qx+R

For example, suppose 8 is divided by 3.
In this case, N=8, x=3. 3×2=6, which is 2 less than 8. hence Q=2 and R=(8-6)=2 Hence, 8=2 ×3+2.

Basic Remainder Theorem
The basic remainder theorem is based on the product of individual remainders.

If R is the remainder of an expressionp×q×rX, and pR, qR and rR are the remainders when p,q and r are respectively divided by X, then it can be said that pR×qR×rRX, will give the same remainder as given by p×q×rX
Let's understand this with the help of some examples.

1) Find the remainder when (361×363) is divided by 12.
Steps
1) Take the product of individual remainders, i.e. 36112|R=1 and 36312|R=3
2) Find the remainder when you divide that product by the number 361×36312|R. answer= 3

This is Basic Remainder theorem put across in Numbers.
2) Find the remainder when 106 is divided by 7 i.e. 1067R.
Solution:
10^6=10^3 \times 10^3
Thus 1067R=(1037×1037)R=6×67R=367R=1
So the remainder is 1.
"Remainder when the product of some numbers is divided by the requisite number is the product of individual remainders of the numbers" This is Basic Remainder Theorem put across in words.

Concept of Negative Remainder
The remainder obtained by division of a number N by a divisor X can be expressed in two ways as "R" and "X-R"

For example, 1011 remainder is +10 itself. It can also be written as 10-11= -1 Similarly, 3210 remainder is +2 or -8

Let's express the solution for questions 31 above, in another way- based on the concept of negative remainder. Thus
1067R=1037×1037R=1×17R=17R=1.
Let's see why this happens:

If the numbers N1,N2,N3 give remainders of R1,R2,R3 with quotients Q1,Q2,Q3 when divided by a common divisor D
N1=DQ1+R1 N2=DQ2+R2 N3=DQ3+R3
Multiplying= N1 × N2 × N3
=(DQ1+R1) × (DQ2+R2) × (DQ3+R3) = D(some number)+(R1 × R2 × R3) =first part is divisible by D, hence you need to check for the individual remainders only.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorising Numerator
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon