What is sin2x integration?
Integration of trigonometric function:
∫sin2xdx.
Letu=2x⇒du=2dx⇒dx=12du
Put the above values in ∫sin2xdx:
∴∫sin2xdx=12∫sinudu⇒∫sin2xdx=12(-cosu)+C[∵∫sinxdx=-cosx]⇒∫sin2xdx=-12cos2x+C[∵u=2x]
Hence, the required integral value is ∫sin2xdx=-12cos2x+C