What is the area of the circle whose diametrically opposite points are (4 sin 40∘,0) and (0,4 sin 50∘)respectively
Diameter of the circle is equal to the distance between the given points
Diameter, d =√(0−4sin 40∘)2+(4 sin 50∘−0)2d=√(−4sin 40∘)2+(4 sin 50∘)2d=√(4sin 40∘ )2+(4 sin 50∘)2d=4√(sin 40∘)2+(cos 40∘)2 (sin 50∘=cos 40∘)d=4×1=4 (sin2θ+cos2θ=1)
Radius of the circle =42=2
Area of the circle =A=π r2=π×22=4π