The correct option is A (3083−49√3) cm2
Given that , radius of circle (r ) = 14 cm
Angle of the corresponding sector. i.e central angle
(θ)=60∘
∵ In Δ AOB
OA=OB=Radius of circle
∴Δ AOB is isosceles.
⇒∠OAB=∠OBA=θ
Now, in Δ OAB
∠AOB+∠OAB+∠OBA=180∘
[Since , sum of interior angles of any triangle is 180∘]
⇒60∘+θ+θ=180∘ [given,∠AOB=60∘]
⇒2θ=120∘
⇒θ=60∘
i.e ∠AOB=∠OBA=60∘=∠AOB
Since, all angles of ΔAOB are equal to 60∘. So, ΔAOB is an equilateral triangle.
Also, area of ΔAOB
=√34×(14)2
[∵Area of an equilateral triangle=√34(side)2]
=√34×196
=49√3 cm2
Area of sector OBAO
=πr2360∘×θ
=227×14×14360×60∘
=22×2×146
=22×143
=3083 cm2
∴ The area of the minor segment
= Area of sector OBAO - Area of the equilateral triangle
=(3083−49√3) cm2